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A unified framework is presented for analyzing the accuracy of finite difference, finite
element, and spectral methods in approximating evolutionary problems. It generalizes the
concept of truncation error used in difference methods and demonstrates the importance
of the interpretation given to the discrete data generated in any computation. The analysis
is illustrated most fully for the advection operator and its practical applicability shown by
experiments with the shallow water equations. A two-stage Galerkin method is proposed
and studied, together with various generalizations of the results of Thomée and Wendroff
on spline-Galerkin methods.

1. INTRODUCTION

As an increasing varicty of methods are applied to solve evolutionary problems
there is a growing need for a unified framework in which to compare them. Swartz
and Wendroff [19] have pioneered such comparisons, mainly with respect to linear
operators, and we present here an approach which we have been using over the last
few years and some of the results which have flowed from it.

Any step-by-step procedure for approximating the initial-value problem u, = Lu
or uy; = Lu consists of three stages: discretization of the initial data, updating the
discrete approximant to match the evolution of the true solution, and interpretation
of the final result. Most attention is normally paid to the central stage, and in linear
problems the first and last stages affect the analysis hardly at all. But for nonlinear
problems the interpretation of the discrete data is crucial: whether quantities held in
the computer represent grid-point values of the unknown or are coefficients in a
piecewise linear approximation can, for instance, determine whether a scheme is
second-order or fourth-order accurate. We therefore formalize this relationship by
using the restriction and prolongation operators introduced by Aubin [1] for studying
elliptic problems. This approach generalizes the work of Raviart [15] and Temam [20]
on evolutionary problems and difference methods and a similar framework has been
used by Noble {13} and others for analyzing integral equations.

There results a generalization of the concept of truncation error, which is the
familiar basis for the analysis of difference schemes. This may be applied both to fully
discrete approximations and to semidiscrete schemes, in which the time variable is left
continuous so that a system of ordinary differential equations resulis. The former has
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the advantage of incorporating both time and space errors in one analysis and of
displaying the effect of stability properties on the growth of errors. But in multi-
dimensional calculations the accuracy of the spatial approximation is most important
in the economics, and the greater simplicity of the semidiscrete analysis allows this to
be concentrated on. We shall therefore consider this case in most of the following.
Our analysis will be based almost exclusively on consideration of Fourier modes both
because this is most illuminating in wave problems, including nonlinear interactions,
and because such analysis is most generally applicable across the different classes of
methods we wish to compare.

The generalized truncation error is defined in the next section together with the
most commonly applicable restriction operators. Then in Section 3 the analysis is
applied to the Galerkin method with piecewise linear approximations: the errors in
simple problems arising from Lu = u, and L(u, v) = uv are tabulated against wave-
number and the dependence of accurcay on the interpretation of the results is illustra-
ted by an example for u; 4 uu, = 0. The next section is devoted to comparing various
schemes for approximating the advection operator v - Vv using linear elements. A two-
stage Galerkin method is presented which is a great improvement over the standard
Galerkin method in nonshocked flows. The validity of the analysis in comparing these
methods is checked in Section 5, where the results of computations on the shallow
water equations in two dimensions are discussed. Finally, in Section 6 it is shown how
the results of Thomée and Wendroff [22] on the accuracy attainable with spline—
Galerkin methods may be extended: thus quite general differential operators may be
approximated by a multistage Galerkin process to order 42* using splines of order p.
In that section, too, the analysis is applied to the usual quadratic finite elements to
show that the Galerkin process does not achieve very good accuracy from their use.

2. GENERALIZED TRUNCATION ERROR

To avoid unnecessary complication with the boundary conditions, we shall consider
pure initial-value problems in the form

ou = Lu, on [0, 7] x R4,
2.1

u = uo, at t =0,

where u is vector-valued (possibly complex) and L is a differential operator in RY,
which may be nonlinear but has real coefficients that do not depend explicitly on z.
We suppose that for each ¢z € [0, T, u lies in some Hilbert space ¥V, which we call the
solution space. Then following Aubin [1], we associate the triplet (V3 , p;, , r,) with
any procedure for approximating members of ¥ on a discrete mesh in R¢, which is
characterized by a positive mesh length 4. Here V7 is the space of discrete parameter
values defining an approximation and r;, a restriction operator which. associates such
values with a given member of V. The third element of the triplet, p;, , is a prolongation
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operator, which creates the approximation in ¥ from the discrete parameter values.*
A few key examples should clarify the concepts. In all cases we assume that rp; is
the identity on ¥V, so that p,r, is always a projection operator, i.e., (Pprn)* = Purs .

Examples of Restrictions and Prolongations

Suppose V consists of all complex-valued functions w(x) on the whole real line
which are square integrable. Then consider the following three approximations
which are distinguished by superscripts.

(i) Introducing mesh points x; =jh, j = —J, —J + 1,..., J, then define for
continuous functions w in ¥

8w = {w(x;), —J <j < J}. (2.2}

We call r,8 the grid-point restriction operator and V8 is a (2J - )-dimensional
vector space of grid-point values: note that the infinite range of w is truncated to
| x | < Jh. A prolongation operator p, will be defined by interpolation to some order
between grid-point values.

(ii) A piecewise linear function using the same knots x; and going to zero at
X*_;.4 and x;, has the form

J
Wx) = Y, Wb, (2.3)

Je=—d

where the basis functions ¢,(x) are “roof” functions centered at x;: ¢,(x) = $(x/% — j),
where the piecewise linear function ¢(s) has ¢(0) =1, #(I) =0 for each nonzero
integer /. Suppose W is to be the least-squares fit to a function w & V. Then with the
notation <v, w) for the inner product [ fwdx and || v || for the norm (v, v))!/2, we need
to minimize || w — W | with respect to {W,}, which vields the Galerkin equations for
the best-fit nodal values {w}}

(=3 Wibn, &) = 0. a4
A simple calculation yields the well-known set of equations

IWE AW AW =, wy, —J <j <, (2.5

with W3, and W*,_; set to zero. This relationship defines a restriction operator which
we denote by #,l, the linear fit restriction

mw ={W} —J<j<J}), VYweV. (2.6)

! This limits our discussion to so-called internal approximations to ¥ but as we shall make rather
less use of the prolongation operator this will not concern us.
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The corresponding prolongation operation in this case is

J

W =Y Wig(x) =pimw. @.7

-

The combined operator p,l#;! is the orthogonal projection from the space V to the
finite-dimensional space spanned by the basis functions {¢;}.

(iil) Suppose finally that w(x) is approximated by a discrete Fourier expansion.
Instead of truncation, a periodicity over an interval 2d is imposed, where comparing
with (i) and (ii), we might put d == JA. Thus an approximation takes the form

W(x) = ZgyW(k) et*=, 2.8

where the sum is over the values k& = 0, +w/d, 4-2n/d,..., +Jm/d. The least-squares fit
to w(x) is again given by Galerkin equations but since in this case the basis functions
are orthogonal we can define the corresponding restriction operator r,f explicitly by

2
ritw = {W(k) = Qd)~ f W) et dv ko= jafd, —] <j<J|. @9

Similarly, the corresponding prolongation leads to a projection
PIVR)} = patrfw = Z W) e, (2.10)

The three restriction operators r:8, r;l, and r;f are the most commonly used, either
explicitly or implicitly, and most of our subsequent discussion will refer to them. It
should be pointed out, however, that much analysis of finite difference methods has
been based on 2, the operator vorresponding to taking cell-averages of a function w:
then p,®,2w gives an approximation which is piecewise constant over each cell. In
practical use, too, finite difference methods are often interpreted by means of Fourier
analysis, thus implicitly using a Fourier-based prolongation operator.

Evolutionary Error in a Semidiscrete Case

Now let us consider a semidiscrete approximation u; to the solution # of Eq. (2.1).
For each # € [0, T] it is a member of the discrete parameter space ¥, and is given by a
system of ordinary differential equations in ¢

Oy, = Lty 2.11)

where L, : V3 — V3 is an operator in ¥V, which in some sense approximates L. We
shall normally assume that the initial data are given by u, = ryu® at ¢t = 0. We also
assume r;, and p, to be time independent and for convenience write p,u, = U. Then
we split the error u — U into

u— U= (I — pyry) u -+ pplrau — up). 2.12)
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The first term is purely an approximation error, the difference between u and its
projection into the approximation space. The second we call the evolutionary error
and denote by

e = Iyl — Uy, or e = ppey . (2.13)

Its estimation is our main concern because it accumulates at each time step while the
approximation error matters only at the stages of discretizing the initial data and
interpreting the final result. To estimate the evolutionary error we subtract (2.11) from
the restriction of (2.1) to obtain

3teh = thu — Lhuh
= (rpL — Larp) u + (Laratt — Lytia),

ie.,

aven, — (Lppput — Lpuy) = (rpl — Lyrp) . (2.14)
The term on the right is the truncation error,
T.E. = (r,L. — Lyrp) u. (2.15)

It represents the difference between operating with L on u before then applying the
restriction, and taking the restriction of u before operating on it with L, , as shown
diagrammatically in Fig. 1. It is the forcing term in Eq. (2.14) for the evolutionary
error, which in the case that L and L; are linear, takes the simple form

ateh - Lheh =T.E. (2.}&6}
5
i
1
V ! Vh
u E ':L']U
1
!
: }
i
f: Lh thu
Lu ’: thu

Fic. 1. Diagrammatic representation of truncation error (2.15).
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In much of the sequel we shall consider the Galerkin method, as studied,
for example, by Dendy [6, 7] and Dupont [8], and we need to see how it defines L; .
We can introduce first the Galerkin approximation L% to L, in a subspace S = span
(v)7 of v, as an operator from S to S such that

(LU — LSU,v> =0, for 1<j<J,VUES. (2.17)

Then with p;, and r;, such that p,r, is the least-squares projection of V into S, we can
define the discrete Galerkin operator L,° by .
{Lputy, — paLaSuy , v;) =0, for 1<j<J;

that is,
LhG = l’thh = thGph . (2.18)

Evolutionary Error in a Fully Discrete Case

In a fully discrete approximation with a time step Az, we suppose a sequence of
elements u,” of 1, are generated by a one-step procedure

up™t = B, n=20,1,2,...,
(2.19)

u,° = rpul.

Here E;, is an operator on F; which approximates the evolution operator E(4¢)
defined to take u(z) to u(t + At) in the evolution of (2.1). Then abbreviating E(4¢) to £
and using superscripts to denote repeated application of £ and F;, the usual re-
grouping of terms gives

eyt = U — "
= rp "t — B rpl
= [mEu"™ — Eyr™ ] + -+ [EfraFu™ T — Efttu™
+ o A BT B — Bl (2.20)
The truncation error in this case is defined as
T.E. = (d1) (rnE — Eury) u, 2.21)

which, when r, is the grid-point restriction and £, is a difference scheme, is identical
to the usual definition. To obtain an error bound it is necessary to establish the
stability of the discrete procedure; that is, we require that there be constants v, and X
such that

| By vy, — Ex"wp lly < Ke" ! lvy, — walln, Yo, , wy €V, (2.22)
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where || - ||, denotes the norm to be used in V3 . Then, if M is a bound for the norm of
the truncation error (2.21), we have

n—1
el < KM Y. e At 2.23)
§=0
In relating (2.15) to (2.21) it is worth noting that if Az is small so that E(4:) y ~ u -+
AtLu, and Euler’s method is used in (2.18) so that Eyuy = u, -+ 4iLu, , then the
two expressions become identical in the limit 47 — 0. Note, too, that while a conven-
tional stability analysis is needed in the fully discrete case to establish (2.22), in the
semidiscrete case a bound needs to be found for the terms on the left side of (2.14)
and (2.18): in an energy analysis this would be achieved by showing that

Reey, , Lyrput — Ly <y lley, ' some . (2.24)

Axn example is given at the end of the next section for &, + uu, = 0.

The definition of truncation error and the splitting of the error in (2.13) are consis-
tent with those used by Strang and Fix [17] for Galerkin methods, though we place
more emphasis on the discrete space V), to facilitate comparisons with finite differen-
ces; for this reason too we call “truncation error” what Aubin [1] calls “lack of con-
sistency.” In making such comparisons, it is also appropriate that we confine our
attention to the evolutionary error, for with finite differences the corresponding
approximation error is always ignored.

3. ONe-DIMENSIONAL GALERKIN METHOD WITH LINEAR ELEMENTS

in this section we study the truncation error defined by Eq. (2.15) for the simplest
Galerkin methods, comparing the results with corresponding finite difference methods
and noting the effect of differing choices of restriction operator.

Fourier Transform of r;t

We assume a uniform mesh, x; = jh, j = —J, —J + 1,..., J, and periodic boundary
conditions at x = 4-d = -+Jh so that a simple Fourier analysis can be used.

A piecewise linear function using these knots is given by Eq. (2.3) and the Galerkin
equations defining the least-squares fit to a function w are given by (2.5). If w is the
Fourier mode ¢*%, k = m|d, a simple calculation yields

By, wy = | * ero(xlh — ) dx — [ " 9 g(s) ds
d v~1

= ¢94(36)2 sin? 1€, 3.5
where £ = kh, which we substitute into (2.5). The Fourier transform of the left-hand
side of (2.5) gives a factor $(2 + cos &), so we introduce

6(1 — cos &)
£(2 + cos &

o
L2
[N

N

oé) =
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to obtain Za(€) e¢h,(x) as the best linear fit to e#=. In terms of the restriction operator
r;}, we have

rieit = {a(f) e, £ = kh, —J <j <J}, (3.3)

and we can regard «(¢) as the Fourier transform of r;L. At low frequencies, «(§) ~
1 4+ £3/12 so that nodal values are amplified by O(#%) compared with the fitted mode—
confirming the second-order accuracy of the fit and agreeing with one’s intuition for a
linear fit to a sine wave. The highest modes that can be represented unambiguously on
the mesh are & = Ju/h, corresponding to two-grid-length waves, so most of our
tables of truncation error will be for 0 < £ < 7. However, larger values of & give rise
to the so-called aliased modes and it is an important feature of the restriction ;! that
these are damped by a factor k2. In Table I we tabulate «(§) up to £ = 27 to show

TABLE I

Fourier Transform of r;!

13 0 /4 w2 3n/4 o Sm/4 3m/2 T=/4 27

o€) 1.0 1.052 1.216 1.427 1.216 0.514 0.135 0.021 0.0 -

how amplification gives way to damping as ¢ increases. Note that for the grid-point
restriction, the corresponding quantity is always exactly equal to one, giving maxi-
mum aliasing.

Truncation Error for u, = u,

Next let us consider the truncation error (2.15) when the Galerkin method is used in
a semidiscrete approximation to the equation u; = u, . With the Fourier mode &'**
for u it is clear that

rllu = ikrylu = {ikof£) €'¢}. (3.4

As in (2.18), the discrete Galerkin operator L;! is defined from the Galerkin equations
and, recalling the notation U for p,lu, , these are

(8,U — LU, ¢;> = 0. (3.5)

Then, since by definition 0, = Lylu, so that 0,U = pslL,'u, , we deduce that
Ll = rllp,l. More explicitly, if we denote the nodal parameters of u, and U by U, ,
these satisfy the system of ordinary differential equations

U, + %Uj + %Ujﬂ = 3N (U;q — Uy, (3.6)
that is, #, = L;lu;, . It follows that, for u = 2,
3isin ¢

(Lalra'u); = Lyla(€) €76 = T T cos B a(§) e'is, (3.7
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So finally, the truncation error is given by

(T.E), = [1 3 sin £ ] iko(£) evié, (3.8)

T QR+ cos d)

'The crucial quantity is that contained in the square brackets, which we denote by
Ba(é). As £—0, Bg(é) ~ £Y180, displaying the fourth-order accuracy for this
Galerkin scheme which is now well recognized; Collatz {2], Swartz and Wendroiff [15].
Looking back at the analysis it is clear that B(£) is independent of the restriction
operator used: if (3.6) were interpreted as a finite difference scheme, the same trunca-
tion error would be obtained except that «(£) would be replaced by unity. In Table 11

TABLE 1I

Truncation Errors for u#; = u,

3 £—0 w/4 72 3n/4 T
Bal& ~£4/180 0.0023 0.045 0.304 1.0
Ben(&) ~£430 0.0118 0.151 0.529 1.0

we therefore tabulate Bg(£) together with the corresponding Prp(€) obtained from the
fourth-order explicit finite difference scheme, considered, for example, by Kreiss and
Oliger [12],

(4 — cos &ysin €
3¢ :

In more than one dimension such a scheme would be used as part of the iteration to
solve the implicit system (3.6).

Uj = h(1 — }8%) 4,U;, Bro(é) =1 — (39

Truncation Errors for L{u, v) = ww

Any nonlinear operation will prevent the restriction being taken out as a factor, so
we start our considerations with the simplest, L{x, v) = up, the product operation.
Using linear elements, the Galerkin method of approximating w = uv gives w, =
L}y , vn) = rit{(patun)(palon)], that is,

§Wia B AW+ Wi = 50UV + Uil Vi + UiV + UiV
+ UiadVi + Ui Vi) + 30UV

P
LI
St

2

With U; = ¢, V; = " we can therefore write

3 + cos &€ + cos 1 + cos(€ + 7) -

1 Y} = - ,
LiMuy, , vy) 4~ 2 cos(€ - ) Upy, = '}’G(gv 7wy (3.11)
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to define ys(€, ). The truncation error under the restriction 7,! becomes

[ra' L, ©) — La(ra'u, rlo)]; = [o(€ + 1) — yalés 1) €) ()] €764m. (2.12)
This is again fourth-order accurate with

val€, m) é) aln)
o€ + 1)

s Q% 3 2 s Eq—>0  (13)

B¢, =1~

and we tabulate (¢ + ) BcY(¢, 1) in Table I11; note that it is symmetric in &, 7.

TABLE III

e~¢+m (T.E.) for the Galerkin Product Operation under r,! and 7,2

i
x /4 /2 3u7/4 T /4 /2 3u/4 i

rpl Fi8
/4 —0.0064 —0.104
/2 —0.058 —0.262 —0.160 0.0
37/4 —0.286 —0.550 —0.672 0.0 0.387 0.604
r —0.476 -—0.604 —0.619 —0.493 0.226 0.5 0.631 0.667

However, suppose the truncation error for the same discrete operation is considered
under the grid-point restriction r;?. Then, apart from the exponential factor, the
truncation error is just

Ba?(é,m) =1 —yg(é,n) ~ —%&n, as &7 —0. (3.19)

That is, from this viewpoint the scheme is only second-order accurate. As some
compensation we see from Table III and from (3.11) that there is no error when
¢+ n =m, and for £ + 7 > = the two restrictions give very similar results. On the
other hand, a more obvious approximation to the product operation, which is certain-
ly quickly carried out, is to merely multiply together the nodal values and set W; =
U,V; . Now this clearly has no error under 8, while under »,! the error is just [«(§ -+
1) — a(€) ()] exp ij(€ + 1) and the scheme is only second-order accurate. These
comparisons will be considered more fully for the advection equation in the next
section.

Numerical Example

We end this section with a numerical example to illustrate the practical effect of
using different restriction operators. Suppose the advection equation u#; + uu, = 0 is



FINITE ELEMENT EVOLUTIONARY ERROR 255

solved on the interval [—1, 1] with periodic boundary conditions and initial data
#(x, 0) = cos? Jwx. The exact solution at ¢ = } is easily calculated and compared
with that obtained by a straightforward application of Galerkin’s method using linear
elements on a uniform mesh (the scheme denoted by SSG in the next section).

Table IV first shows the x-values at which « attains the values 0 ($) 1. The Galerkin
solutions U are obtained by integrating with small time steps and extrapolating to
4t = 0 so that only the spatial truncation errors are involved. The next three rows of
the table show the corresponding values U%(x, 4) of the Galerkin solution obtained
with the most easily calculated initial data given by r9u(x, 0) and for mesh-length
A =1/6,1/12, and 1/24. The errors are clearly many times larger for x > 4, where
the wave is steepening, compared with x < 4; moreover, the errors there are slow to
converge and erratic in sign.

TABLE IV

Numerical Results for the Advection Equation, Interpreted under Restrictions r# and r,l, with
h = 1/6,1/12, and 1/24

X —1 ~ 13/24 —1/4 1/24 1/2 17/24 3/4 19/24 1
u(x, + 0.0 0.25 0.5 0.75 1.0 0.75 0.5 0.23 0.0
Us(x, 1)

1/6 0.0011 02541 0.5018 0.7428 1.0536 0.6769 0.4893 0.3018 —0.0077
1712 0.0002 0.2510 0.5000 0.7493. 1.0001 0.7038 0.4806 0.2911 —0.0000
1/24 6.0000 0.2501 05000 0.7499 1.000% 0.7656¢ 0.4942 0.2413 —0.0000
patratulx, %’)
i/6 —0.0006 0.2500 0.4999 0.7497 1.0120 0.7111 0.4997 = 0.2883 —0.0064
1/12 —0.0001 0.2500 0.5000 0.7499 1.0045 0.7081 0.5002 0.2917 —0.0022
1724 —0.0060 0.2500 0.5000 0.7501 1.0007 0.7637 0.5000 0.2364 —0.0001
Utx, 9
1/6 —0.0044 0.2508 0.5020 0.7458 1.0673 0.6858 0.4882 029006 —0.0129
1/12 —0.0012 0.2502 0.5000 0.7501 1.0033 0.7067 04797 0.28382 —0.0022
1/24 —0.0003 0.2499 0.5000 0.7501 1.0016 0.7669 04941 0.2401 —0.0004

This behavior is almost entirely explained by the next three rows of the table, which
show the values taken by the projection of the true solution, p,ir,lu(x, §), correspon-
ding to the three meshes used. In particular, at x = 17/24 and 19/24, where | 1, |
largest, the projections depend heavily on whether the x-value is a node or not and
the error changes sign for 2 = 1/24, The final three rows of the table give the values
of U(x, %), the Galerkin solution obtained from the consistently restricted initial data,
riu(x, 0). It is the difference of these from p,tr,lu which our analysis most readily

applies to, though it is also easy to deal with Us. In Fig. 2 we plot the “compressive”

is
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10
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FIG. 2. Solution of u; -+ uu, = 0 at t = + with & = ¥; u and p,lr,}u shown by full line, U by
dotted line.

x— 10

part of u at £ = § together with U and p;lr,'u calculated for £ = £, showing how U is
largely determined by attempting to match p,lr,lu through the steep front.

Though it is premature to try to identity the absolute magnitudes of these errors
with the truncation errors tabulated in Table V of the next section, we can note some
rough values. Initially we have a single mode & = =, but at # = § the locally dominant
mode varies from about 72 to about 37. Thus when 4 = 1/12, the maximum value
of ¢ is about #/4. From Table I we might therefore expect approximation errors
u — pilr e of up to 0.05, as we find; and these are reduced by a quarter for 2 = 4.
However, from Table V we would expect truncation errors of only about 0.01 when

TABLE V
Scaled Truncation Error A(T.E.)/i exp (¢ + 7) for SSG

Ui
\A /4 w2 3n/4 T

0 0.0019 0.086 1.021 3.820
/4 0.0096 0.262 1.803 3.014
/2 0.011 0.432 1.603 1.903
3w/4 ~0.107 0.021 0.617 0.974

- —0.296 —0.527 -0.403 0.0
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h = 12, which with the growth rate incorporated in (3.19) below is consistent with
the erros p,irlu — Uin Fig. 2.

Finally, we show how in this case a bound limiting the error growth may be obtained
and the evolutionary error e related to the truncation error T in the manner of (2.24).
From the evolution equations for # and U we have

(i + 30Dy, ¢ =0  and U+ $(Ua, ¢ = 0. (3.15

If we denote by # the projection p;lrylu, then e = # — U and {u — #, ¢,;> = 0 so that
ey, b5 = <{uy — Uy, ¢;>. Thus we get

<et s ¢i> = <~%(u2 — Uz)w » ¢1>;

which corresponds to Eq. (2.14). To obtain a bound for the second term in the form
of (2.24) we note that e € span{¢;} so, after integrating by parts, we obtain

ey, e) = KK+ U)e, ey + <7, &)
= i + U, (), + <7, e;

lel el = — K@+ 0),, & + T o> 317

Liell < max [~ 3@ + O)llell + I 7. (3.18)

The first term on the right corresponds to the sounght-after bound in (2.24) and it
follows that

el < [ " T(s)) eto ds, (.19

where
b = max [— }(# + U),].

In the present example, if we approximate U by #, then & =3 upto¢ = 4.
4. ApvecTION OPERATOR WITH LINEAR ELEMENTS: THE TwWoO-STAGE
GALERKIN PROCESS
In this section we compare three easily implemented approximations to udp, all
based on the Galerkin method with linear elements but distinguished by the way in

which the product is formed. The three schemes are straightforward Galerkin (de-

581/34/2-9
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noted by SSG for single-stage Galerkin), a two-stage Galerkin process (denoted by
TSG), and a point multiplication Galerkin process (denoted by PMG). (The last one
would be equivalent to that advocated by Swartz and Wendroff [18] when approxima-
ting d,F(u).) We apply each to finding w = ud,v and tabulate their truncation errors
under the restrictions 7! and/or ;8.

(a) Single-Stage Galerkin SSG. Direct calculation from the Galerkin equations
gives
Wia + Wi + iWisa = 3H{GUi + UV, — Vi)
+ GUssa + 3U)(Viea — V)b “4.D
For the Fourier modes U; = ¢%¢, V; = e'", where &€ = kh, y = Ih, the truncation
error under the restriction ;! is given by

(T.E.); = e & [lo(€ + 1) — yssa(€, 1) «(€) )], 4.2)
where
sin  + 4 sin 37 cos 3£ cos ¢ + 7;)
'})SSG(E" 7]) h[z _I‘ COS(f + 7])] (43)

Asymptotically, we have

| T.E. | ~ I[4n* + 8n%¢ + T — 2931720,
= 17*/720 = 171514/720, when k = 1. 4.9

Thus the scheme is fourth order and Table V shows the truncation error over the
complete range of arguments.

(b) Two-Stage Galerkin TSG. In obtaining an approximation to ud,0 from piecewise
linear approximations U and V to u and v, the SSG process effectively uses the piece-
wise constant approximation 9,V to d,v. There would seem to be some advantage to
calculating the closest piecewise linear approximation to d,v before incorporating it
into a combination such as ud,». This is the motivation for the two-stage Galerkin
process. If we denote by Z the intermediate approximation to 9,v, we obtain from
combining (3.6) and (3.10),

24+ 3Z; + §2540 = 307 (Vi — Vi),
%W}q + %W; + %W}H = il'z‘(Ua'—lzi—l + Uj—1Zj + UjZf—l + U,~Z,-+1
+ UinZ; + UpaZisd) + 3UZ; . 4.5)

The truncation error under 7,! is therefore obtained from (3.7) and (3.11) in the same
form as (4.2) with yssa(€, n) replaced by

3 s
')/TSG(fa 77) = 71‘(71%75? ?’G(f, "7)
_ 3 sin9[3 4 cos &€ 4 cos q + cos(é + 77)]

h(2 + cos (4 + 2 cos(§ + ) .6
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Asymptotically, we have

| T.E. | ~ [[26%) + 3¢ -+ 2én® — 47%1/720
= m*/240 = [5h4[240, when &k =/ 4.7
Thus, the scheme is almost six times better than SSG in this limit and Table VI shows
the truncation error over the complete range of arguments. Note that the improvement
in accuracy is considerable for y > £ > 0 though not as great as in the asymptotic

limit when £ =5 — 0.
TABLE VI
Scaled Truncation Error #(T.E.)/i exp ij(¢ + z) for TSG

7
A /4 /2 37/4 T

0 0.0019 0.086 1.021 3.820
wf4 —0.0028 0.015 0.401 1.614
w[2 —0.043 —0.308 —~0.535 0.424
3w/4 ~0.222 —0.789 —1.006 0.067
7w —0.372 —0.897 -—1.001 0.0

() Point-Multiplication Galerkin PMG. Here 0, is approximated by the Galerkin
process, 1.e., Z; is calculated as in TSG, but then W is obtained by simple multiplica-
tion W; = U;Z;. The truncation error is clearly given, under the restriction r;1, by
(4.2) with ygss replaced by
3siny

yemo(E, 1) = m .

Asymptotically, we have only second-order accuracy with

| T.E. | ~ /6 (4.8)

and this shows up in Table VII as a 30-fold increase in error compared with TSG at
£ = n = «/4. However, note that the two schemes have the same error at £ 4 9 =#
because, as noted previously, yo(§, # — §) = 1. Furthermore, the thinking behind the
construction of PMG is oriented toward grid-point values and the truncation error
should therefore also be analyzed under the restriction #,8. Comparing with (3.8), we
see that the truncation error is then given by

(T.E.); = iets+n[] — 3 sin n/(2 -+ cos n) A, {4.9)
the quantity in square brackets being equal to /Bg{n). Thus under this restriction,

since Bsln) ~ 74/180, the scheme is fourth-order accurate. The corresponding values
are given in the last row of Table VII as there is no dependence on £.
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TABLE VII

Scaled Truncation Error A(T.E.)/iexp ij(¢ + n) for PMG under

Restrictions r;l and 8

AN

/4 /2 37/4 7

ryl
0 0.0019 0.086 1.021 3.820
/4 0.087 0.322 0.401 1.614
/2 0.118 —0.308 —1.636 0.424
37/4 —0.222 —1.796 —3.023 0.067
T —0.599 —2.005 —2.796 0.0

18
All 0.0018 0.0708 0.7153 3.1416

Comparing the three methods, it should first be noted that they all reduce to the
same procedure as ¢ ~— 0, the tabular entries under the restriction ;! then all equaling
nodn) Ba(n); for the resultant linear problem too the error differs by only the factor
ofn) according to whether the analysis is done with the restriction r,! or r,8—cf. the
first and last rows of Table VII. But as the nonlinearity is increased with £, the proce-
dures differ from one another and the error depends increasingly on the restriction
operator used. This dependence is summarized in Table VIII, where the leading terms
in the error for ¢ = 5 — 0 are given. Clearly we must compare SSG and TSG under
r;! with PMG under r,8.

The second point to note is the advantage gained by both TSG and PMG from
explicitly forming the piecewise linear approximation to ¢,v before multiplying by u;
with TSG the error actually decreases as ¢ is increased from zero. So the real choice is
between these two. Comparing the last row of Table VII with Table VI, we see that
there is very little to choose between them when all the frequencies present are low.
That is, if we regard the nodal values given by PMG as approximations to the grid-
point values of the solution and those given by TSG as approximations to nodal

TABLE VIII
Leading Terms in (F/)T.E. for ¢ = 9

Restriction rl g
17 1
SSG & —— &
720 ¢ £
' 1 1
S — ft — g
156G ’ 240 ¢ 6 ¢
1 1
PMG — £ — &

6 180
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parameters in a piecewise linear least-squares fit to the solution, there will be little to
choose between them. However, suppose there are higher frequencies present, near
the limit of the resolution of the mesh or beyond—for the truncation error as defined
by (2.15) or (2.21) must include all frequencies in the true solution; or; looked at in
another way, nonlinear interactions in the approximation wiil create higher frequencies
which have to be resolved onto the finite mesh. Then oaly if »,! is used, rather than
8, will reasonable accuracy be maintained, and however the results of PMG are
interpreted they are not likely to be as good as those from TSG. This reflects -the
viewpoint, based on the theory of approximating noisy data, that in the presence of
high frequencies one cannot expect to predict point values accurately but may predict
best linear fits.

5. NUMERICAL EXPERIMENTS WITH THE SHALLOW WATER EQUATIONS
IN Two DIMENSIONS

LA VIVAMVLE QUL GLLIS ULULLVEIVY SLVGIUGD WAL UOWAL G0 GPUE VAL 1LY Pk UL
equations—see, for example, Cullen [3], Hirsch [11], and Gresho et al. [10]. We
briefly present here results for the shallow water equations and a fairly standard test
problem in a channel on a rotating earth, see Grammeltvedt [3]. The equations are

Uy + uu, + vu, + Gy — fo =0,
vy + uv, + oo, -+ ¢y, + fu =0,
9515 _1_ (u¢)aa + (Uﬁb)y = 0.

o~
W

The Coriolis parameter f is as given by the B-plane approximation, /= f; -+ By,
where f, = 1.0 x 10%*sec™?, B =15 x 10 sec* m~L. The channel is of width
H = 4400 km and periodic in the x-direction with period I = 6000 km: rigid bound-
ary conditions, v = 0, are imposed at y = 3. Initial conditions are derived from
a ¢ field given by

¢ = g{H, — Hytanh$(y/H) + H, sech? $(y/H)[0.7 cos 2mx/L
-+ 0.5 cos 6ax/L + 0.3 cos 127x/L]}, (5.2

with the velocity fields then given by fit = — ¢, , fo = ¢, ; the parameters here are
Hy ==2000m, H, = 220m, H, = 133 m, and g = 10 m - sec2. Thus waves of wave
numbers 1, 3, and 6 are present initially and are in geostrophic balance.

We present results for three main computational schemes—TS8G, PMG, and &
conservative fourth-order finite difference scheme based on (3.1) (scheme J in
Grammeltvedt’s paper [9]), all used with leap-frog time integration with a time step
chosen so as not to influence the error comparisons. In each case square grids of
either 200 or 400 km were used and initial approximations obtained by taking the
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appropriate restrictions of the initial data. As there is no analytic solution to the
problem, a very fine grid (50 km) finite difference approximation was taken to give
the definitive result and the appropriate restrictions of this were compared with the
computed values. Several comparisons are possible but the most concise and relevant
are the amplitudes and phases of the main waves, of wavenumbers 1 and 3. They are
obtained from Fourier analyses in x with a weighting in y consistent with the initial
data, i.e., sech? 9y/2H, and they supersede the results quoted in Cullen [4]. The results
given in Table IX show that there is indeed little to choose between TSG and PMG in
integrations up to 24 hr if the respective restrictions r;! and .8 are used in the com-
putation of the error.

TABLE IX

Comparative Errors for Integration of the Shallow Water Equations

Time TSG PMG TSG PMG Fin. Diff.
Feature (hr) (400 km) (400 km) (200 km) (200km) (200 km)
‘Wave no. 1 6 0.0 0.1 04 0.3 0.2
Amplitude 12 -—5.8 —2.1 —0.3 —0.5 0.8
(Percentage error) 18 -—0.3 —0.6 —0.7 —0.5 2.6
24 —10.3 —14.1 —1.0 —0.9 —7.0 .
‘Wave no. 1 6 —0.03 0.00 0.00 0.00 0.00
Phase 12 —0.06 —0.06 0.00 0.00 0.00
Error 18 -—-0.06 —0.07 0.00 0.00 0.10
(radians) 24 —0.00 —0.01 —0.03 —0.04 —0.06
Wavenumber 3 6 3.1 2.8 0.1 0.1 14
Amplitude 12 25.8 19.4 5.0 4.7 10.8
(Percentage error) 18 - 149 28.9 5.2 4.9 16.7
24 —23.3 —29.4 ~2.1 —1.5 9.2
‘Wavenumber 3 6 —0.15 —0.13 —0.01 ~0.01 0.01
Phase 12 —0.00 —0.01 —0.04 —0.04 0.02
Error 18 —0.21 —0.20 —0.07 —0.07 0.11
(radians) 24 —0.28 —0.34 —0.01 —0.01 0.08

The reduction of grid size from 400 to 200 km reduces the Fourier parameters
kAx for the three modes in the initial data from 2#/15, 27/5, 4w/5 to #/15, «/5, and
24r/5. From Tables VI and VII it is clear that an overall 16-fold error reduction could
not be expexted but that this would be more nearly attained at lower wavenumbers
and with PMG rather than TSG. The amplitudes in Table IX appear to bear this out:
for wavenumber 1, the reduction in maxium error is roughly 14-fold for PMG and
10-fold for TSG while for wavenumber 3 it is 6-fold for PMG and 5-fold for TSG. The
phase errors are more difficult to assess both because they are more difficult to
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estimate and because the truncation error analysis is less obviously applicable; for
both waves, however, it does seem that PMG shows a larger error increase when the
mesh is doubled—for the higher wavenumber this is about 5-fold as compared with
4-fold for TSG. Comparing both the finite element schemes with the finite difference,
one sees that the latter is up to seven times less accurate in amplitude at the higher
frequency while only three times worse for wavenumber 3. This is entirely consistent
with Table I, where the ratio varies from the asymptotic value of 6 to a value of 3 at
the highest mode of 27/5.

More tentative conclusions might be drawn from Table IX regarding the growth of
errors. There seems to be a deterioration with time in the performance of PMG and
the difference scheme compared with TSG; and this would be consistent with the fact
that the restriction operator r,& used with these two provides no damping for the
higher modes created as the computation proceeds. This is more a matter of stability
and, indeed, the PMG scheme on the 400-km grid goes unstable after 3 days and on
the 200-km grid after 5, while TSG remained very stable. The stability of the finite
difference scheme has been improved by ensuring energy conservation and this may
partly account for its lower accuracy.

6. HiGHER-ORDER ELEMENTS AND (GENERAL OPERATORS

The linear element which has been analyzed in previous sections is the lowest-order
B-spline, corresponding to order p = 2. In [21, 22] Thomée and Wendroff analyzed the
semidiscrete Galerkin method for the general B-spline in the case of linear differential
equations, periodic on an interval of the real line. They showed that with equally
spaced mesh points, and smooth coefficients and data for the equation 9 = Lu,
with L of order m, the order of accuracy is 2u — mif mis even and 2u — m - 1if m
is odd (assuming 2u > m -+ 2). Their analysis was influential in the development of
the ideas set out here and though presented in a different way had a similar structure.
It was based on a quasi interpolant with implicit use of the grid-point restriction and
a prolongation using linear combinations of shifted B-splines as basis functions.
Cullen [5] has recalculated the truncation errors using the natural generalizations of
p»* and r;! and has shown that with such a restriction the product operation is approxi-
mated to order of accuracy 2u. Thus the orders of accuracy quoted above can be
maintained with nonlinear equations.

Moreover, the use of multistage Galerkin methods can ensure that an accuracy of
order 2u is always maintained. For suppose Lu has the form L@ L1 - [y where
each L consists of either differentiation &, or multiplication by u or by a smooth
function of x. Then the Galerkin approximation to each L® has the form L =
rSLWp,s, where 1,5 and p,S are the generalizations of r;l and p;l; and L, = Li® - LY
has order of accuracy 2u. This follows immediately from writing the truncation error
as

q X . R ..
(L — LY u =Y L@« LEFVESL? — LPrH LY o 19 (6.1

i=1
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In particular, with linear elements the single-stage Galerkin process gives only O(42)
accuracy for the diffusion equation u; = u,,. But two-stage Galerkin, using the
approximation to L = d, contained in (3.6) twice, gives a fourth-order scheme. The
truncation error for either scheme will be of the form e(£)(—k2) «(§) ¢¥%, analogous to
that for u, = u, given in (3.8). The resulting essa(§) and ersg(€) are tabulated in
Table X and their respective asymptotic forms are —£2/12 and £4/90. For comparison
the Numerov finite dlﬁ‘erence scheme h~2(1 — (1/12) 6% 82(] 1s also g1ven in the table

CHU LG LWL BU UM L LYY UBMEY  PAUVRDD LUD LGS WIAVID AVL IWLEW & LM, LI

particular, leaves the two-grid-length wave (¢ = «) completely undamped; this is of
course a property carried over from the approximation to 8, but which is much less
acceptable here. Thus this scheme is not put forward as being of practical value,
especially in comparison with the Numerov scheme.

TABLE X

Truncation Errors for u; == u,,

3 &0 /4 /2 37/4 T
essa(d) ~ —£2/12 —0.052 —0.216 —0.427 —0.216
ersG(€) ~  £490 0.0045 0.088 0.515 1.0
erp($) ~ {4240 0.0016 0.027 0.141 0.392

As a final illustration of the truncation error calculation for finite elements, we
consider the approximation to u; = u, using quadratic elements. These have endpoint
and midpoint nodes, so that there are three values to define the quadratic on each
element, and with the Galerkin procedure give the scheme

(Ut)i + S(Ut)a'+1/2 + (Ut)j+1 = 1O(Uj+1 - Ua‘)/ha (6-2)
_'(Ut)i—l + 2(Ut)j—1/2 + S(Ut)a' + 2(U t)i+1/2 — (Ut)a'+1
= 102(Ujs1/2 — Us-a7e) — Uiz — Ui p]/A. (63)

To carry out a Fourier analysis it is necessary to distinguish between the endpoint and
midpoint nodes. Suppose we use a restriction r,2 which, analogous to r;1, gives on
uniform elements of length A

(r%e®); = ag(€) e, (1, 9€™9);,1/n = oy 5(E) HTHVE, 64
where as usual £ = kA, Then, in an obvious notation, we have with I, = &,

PALeM = {ikag(£) €, Ty o€) €410, 6.5
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Defining L;2 by (6.2) and (6.3), we obtain also

Lydr, e = {ih 2 B(€) e, ih1B, (&) e* 1124}, (6.6
where
B cos 3€ -+ 4B,/ = 10, sin ¢,

6.7)
Bo(4 — cos &) 4 2B,/s cos 1€ = 200y, sin 3¢ — 5o sin €.

Now suppose ;1 is defined by least-squares fitting. Then the coefficients in (6.4) are
given by
oy €08 3E + 4oy = 15(—4€ cos L€ -+ 8 sin 1£)/&5,

. , (6.8)
(4 — cos &) + 20, cOs 1€ = (£ cos £ + 3£ — 4 sin £)/E8
The resulting asymptotic forms for these and for 5, and S, , from (6.7) are then
(&) =14+ 0,  opd =1+ 0,
(6.9

Bu®) = &1 + (112 £ + 0@, Bunl® = €1 — (1124) § + 0.

The scheme is therefore, under this analysis, only second-order accurate.

This is partly misleading or unfair, however. Because 5, /8, is different from
0 50/ oty , the wave will distort with time and the ratio of the endpoint and midpoint
amplitudes will change. Thus the best fit to the eigensolution of u, = u, is not an
eigensolution of the approximate equation. Suppose therefore we carried out our
restriction operation in terms of the eigensolutions of the approximate equation. Thus
we abandon (6.8) and insist that oy = coy s and By = ¢y, in (6.7). The result is two
nonlinear equations for ¢ and for By/o, . Asymptotically they give

Bo(&) = £(1 — (1/96) €2 + O(£M) w(8), {6.10)
oy (6) = 1 + (1/32) €2 + O(§%) el§). (6.11)
Thus the scheme is still second-order accurate but with a much reduced coefficient.
For larger £, these ratios are tabulated in Table XI. Since the truncation error is

proportional to 1 — By/€w, , these results show that this scheme does not justify its
greater computational complexity, especially comparing equal numbers of nodes

TABLE XI

Ratios for the Assessment of Truncation Error Obtained with Quadratic Elements and w, = u,

£ w4 /2 3n/4 T 372 27

Bo)ctg 0.9935 0.9826 0.9243 0.7958 0.32 0.0
otyjaloe 0.979 0.822 0.632 0 —0.89 -
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rather than equal numbers of elements. Using appropriate collocation procedures,
however, rather than the Galerkin procedure adopted in (6.2) and (6.3) it is possible
to obtain fourth-order accuracy.

7. DISCUSSION

The analysis presented in this paper allows finite element and other approximations
of evolutionary problems to be compared on a consistent basis, eliminating distortions
arising from different methods of deriving initial data and interpreting the results.
Computational results support the error analysis reasonably well. For the linear
problems discussed, success depends on reproduction of the eigenfunctions and
eigenvalues of the true solution. This is only achieved well by finite elements in the
spline-Galerkin case. For nonlinear problems the evolutionary error analysis allows
better understanding of the difficulties. To get acceptable finite difference solutions it
has often been necessary to enforce conservation laws, or reinterpret the results using
Fourier analysis and adopt techniques to eliminate aliasing interactions. Our analysis
shows that it is necessary to make an initial assumption about what is being predicted
before working out the truncation error. For instance, we can attempt to predict the
best fit to a.function in a finite element space or the first N Fourier components of it.
Some assumptions are likely to lead to more successful algorithms than others, and in
particular, attempts to predict point values are not likely to be successful. In general,
to choose which parameters are to be predicted it will be necessary to know something
about the exact solution.

The analysis also suggests that it is necessary to use the finite element method with
some care in wave propagation problem. High accuracy compared with finite dif-
ferences has only been obtained in the spline-Galerkin case. Even here it turns out
that it is lost if the mesh is irregular, though it can be recovered by transforming the
coordinates instead. This behavior is very similar to that with finite difference schemes
and has been confirmed by Cullen [5]. For nonlinear problems the finite element with
the Galerkin procedure has the advantage that it seeks to predict coefficients of a fit
rather than point values. However, even this could be lost if the Galerkin algorithms
were replaced by collocation schemes based on low approximation errors at special
points. It is also necessary to decide whether single~ or multistage schemes should be
used for complicated nonlinear operators. The analysis in Section 6 suggests that the
best technique could be to combine the Galerkin product with high-order difference
approximations to derivatives. The generalized truncation error analysis given here
should make it easier to discuss such alternatives.
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