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A unified framework is presented for analyzing the accuracy of finite difference, &rite 
element, and spectral methods in approximating evolutionary problems. It generalizes the 
concept of truncation error used in difference methods and demonstrates the importance 
of the interpretation given to the discrete data generated in any computation. The analysis 
is i&&rated most fully for the advection operator and its practical applicability shown by 
experiments with the shallow water equations. A two-stage Galerkin method is proposed 
and studied, together with various generalizations of the results of Thorn&e and Wendroff 
on spline-Galerkin methods. 

1. INTK~DUCTI~N 

As an increasing variety of methods are applied to solve evolutionary problems 
there is a growing need for a unified framework in which to compare them. Swartz 
and Wendroff 1191 have pioneered such comparisons, mainly with respect to linear 
operators, and we present here an approach which we have been using over the last 
few years and some of the results which have flowed from it. 

Any step-by-step procedure for approximating the initial-value problem ut = Lu 
or gtt = Lu consists of three stages: discretization of the initial data, updating the 

iscrete approximant to match the evolution of the true solution, and ~~ter~~et~~~~~ 
of the final result. Most attention is normally paid to the central stage, and in linear 
problems the Elrst and last stages aKect the analysis hardly at ah. But for ~~~~~~~a~ 
problems the interpretation of the discrete data is crucial: whether quantities held in 
the computer represent grid-point values of the unknown or are coefficients in a 
piecewise linear approximation can, for instance, determine whether a scheme is 
second-order or fourth-order accurate. We therefore formalize this relationship 
using the restriction and prolongation operators introduced by Aubin [I] for studying 
elliptic problems. This approach generalizes the work of Raviart [I 5] and Temam [ZO] 
on evolutionary problems and difference methods and a similar framework has been 
used by Noble [13] and others for analyzing integral equations. 

There results a generalization of the concept of truncation error; which is khe 

fa~~i~iar basis for the analysis of difference schemes. This may be applied both to fully 
discrete approximations and to semidiscrete schemes, in which the time variable is left 
continuous so that a system of ordinary differential equations results. The former has 
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the advantage of incorporating both time and space errors in one analysis and of 
displaying the effect of stability properties on the growth of errors. But in multi- 
dimensional calculations the accuracy of the spatial approximation is most important 
in the economics, and the greater simplicity of the semidiscrete analysis allows this to 
be concentrated on. We shall therefore consider this case in most of the following. 
Our analysis will be based almost exclusively on consideration of Fourier modes both 
because this is most illuminating in wave problems, including nonlinear interactions, 
and because such analysis is most generally applicable across the different classes of 
methods we wish to compare. 

The generalized truncation error is defined in the next section together with the 
most commonly applicable restriction operators. Then in Section 3 the analysis is 
applied to the Galerkin method with piecewise linear approximations: the errors in 
simple problems arising from Lu = U, and L(u, v) = uu are tabulated against wave- 
number and the dependence of accurcay on the interpretation of the results is illustra- 
ted by an example for tit + UU, = 0. The next section is devoted to comparing various 
schemes for approximating the advection operator v . Vv using linear elements. A two- 
stage Galerkin method is presented which is a great improvement over the standard 
Galerkin method in nonshocked flows. The validity of the analysis in comparing these 
methods is checked in Section 5, where the results of computations on the shallow 
water equations in two dimensions are discussed. Finally, in Section 6 it is shown how 
the results of Thomee and Wendroff [22] on the accuracy attainable with spline- 
Gale&in methods may be extended: thus quite general differential operators may be 
approximated by a multistage Gale&in process to order hzU using splines of order p. 
In that section, too, the analysis is applied to the usual quadratic finite elements to 
show that the Gale&in process does not achieve very good accuracy from their use. 

2. GENERALIZED TRUNCATION ERROR 

To avoid unnecessary complication with the boundary conditions, we shall consider 
pure initial-value problems in the form 

&al = Lu, 

u = 240, 

on [0, T] x Rd, 

at t = 0, 
(2.1) 

where u is vector-valued (possibly complex) and L is a differential operator in iP, 
which may be nonlinear but has real coefficients that do not depend explicitly on t. 
We suppose that for each t E [0, T], u lies in some Hilbert space Y, which we call the 
solution space. Then following Aubin [I], we associate the triplet (V, , pn , rh) with 
any procedure for approximating members of V on a discrete mesh in [w”, which is 
characterized by a positive mesh length h. Here Vh is the space of discrete parameter 
values defining an approximation and rh a restriction operator which associates such 
values with a given member of V. The third element of the triplet, ph , is aproZongation 
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operator, which creates the approximation in V from the discrete parameter va~~~s~~ 
A few key examples should clarify the concepts. In all cases we assume that Yh,pe)h is 
the identity on V, so thatpnrn is always a projection operator, i.e., (pnr$ = phrh . 

Examples of Restrictions and Prolongations 

Suppose V consists of all complex-valued functions W(X) on the whole real line 
which are square integrable. Then consider the following three approximations 
which are distinguished by superscripts. 

(i) Introducing mesh points xj = jh, j = --.I, --J + I,..., J, t 
continuous functions w in V: 

r$w = {w(xJ, -J < j 6 J>. (2.2) 

We call rhg the grid-point restriction operator and Vhg is a (25 f I)-dimensional 
vector space of grid-point values: note that the infinite range of w is truncated to 
j x \ < Jh. A prolongation operator p # will be defined by interpolation to some order 
between grid-point values. 

(ii> A piecewise linear function using the same knots xj and going to zero at 
xTJWl and xJ+% has the form 

where the basis functions +j(~) are “roof” functions centered at xj: $I~(x) = +(x/h -j), 
where the piecewise linear function c#@) has $(O> = I, +$(E) = 0 for each nonzero 
integer 1. Suppose W is to be the least-squares fit to a function w E V. Then with the 
notation (v, w) for the inner product j kvdx and /j v /j for the norm ((v, v))liz, we need 
to minimize // vs - W ]I2 with respect to { WJ, which yields the Galerkin equations for 
the best-fit nodal values (wf} 

(2.4) 

A simple calculation yields the well-known set of equations 

with W& and WZJ-, set to zero. This relationship defines a restriction operator which 
we denote by ~1, the linear Jit restriction 

1 This limits our discussion to so-called internal approximations to V but as we shall make rather 
less use of the prolongation operator this will not concern us. 
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The corresponding prolongation operation in this case is 

p;{wr} = i w,“+,(x) =phlrf&lw. 
j=-.J 

(2.7) 

The combined operator phlrhl is the orthogonal projection from the space Y to the 
finite-dimensional space spanned by the basis functions {&>. 

(iii) Suppose finally that w(x) is approximated by a discrete Fourier expansion. 
Instead of truncation, a periodicity over an interval 2d is imposed, where comparing 
with (i) and (ii), we might put d = J/z. Thus an approximation takes the form 

W(x) = .Z(,) W(k) eikz, (2.8) 

where the sum is over the values k = 0, -h-/d, +2rr/d,..., &Jr/d. The least-squares fit 
to W(X) is again given by Gale&in equations but since in this case the basis functions 
are orthogonal we can define the corresponding restriction operator rhf explicitly by 

rhfw = 1 m(k) = (2d)-1 s”, w(x) e-ikx dx, k = jr/d, 

Similarly, the corresponding prolongation leads to a projection 

phf( F?‘(k)) = phfrhf w = z(k) 8’(k) eikz. 

(2.9) 

(2.10) 

The three restriction operators r #, rhl, and rhf are the most commonly used, either 
explicitly or implicitly, and most of our subsequent discussion will refer to them. It 
should be pointed out, however, that much analysis of finite difference methods has 
been based on rha, the operator vorresponding to taking cell-averages of a function w: 
then pn”rh&w gives an approximation which is piecewise constant over each cell. In 
practical use, too, finite difference methods are often interpreted by means of Fourier 
analysis, thus implicitly using a Fourier-based prolongation operator. 

Evolutionary Error in a Semidiscrete Case 

Now let us consider a semidiscrete approximation Us to the solution u of Eq. (2.1). 
For each t E [0, T] it is a member of the discrete parameter space V, and is given by a 
system of ordinary differential equations in t 

at%& = -LUk , (2.11) 

where Lh : Vh + Vh is an operator in V, which in some sense approximates L. We 
shall normally assume that the initial data are given by uh = rhuo at t = 0. We also 
assume rh and pn to be time independent and for convenience write phuh = U. Then 
we split the error u - U into 

u - U = (I - phrh) u + p&,24 - uh). (2.12) 
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The first term is purely an approximation error, the difference between u an 
projection into the approximation space. The second we call the evolutionary error 
and denote by 

eh = r$ - uh or e =Pheh. @as> 

Its estimation is our main concern because it accumulates at each time step while t 
approximation error matters only at the stages of discretizing the initial data and 
interpreting the final result. To estimate the evolutionary error we subtract (2.11) from 

the restriction of (2.1) to obtain 

ateh = rhLu - Lhuh 

= 6-h-t - Lhrh) u + (LhrbU - Lh”h)g 

i.e., 

ateh - (Lhrhu - Lhuh) = (rhL - Lhrh) 21” (2.24) 

The term on the right is the truncation error, 

T.E. = (rhL - Lhrh) 61. (2.15) 

It represents the difference between operating with L on u before then applying the 
restriction, and taking the restriction of u before operating on it with Lh , as shown 
diagrammatically in Fig. 1. It is the forcing term in Eq. (2.14) for the evolutionary 
error, which in the case that L and Lh are linear, takes the simple form 

ate, - Lheh = T.E. (2.16) 

FIG. 1. Diagrammatic representation of truncation error (2.15). 

@r/34/2-8 
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In much of the sequel we shall consider the Galerkin method, as studied, 
for example, by Dendy [6, 71 and DuPont [8], and we need to see how it defines Lh . 
We can introduce first the Galerkin approximation LG to L, in a subspace S = span 
(vi){ of ZI, as an operator from S to S such that 

(LU - LGU, Vj> = 0, for 1 <j<J,VUES. (2.17) 

Then with ph and r, such that phrn is the least-squares projection of V into S, we can 
define the discrete Gale&in operator LhG by 

that is, 

<LPh% - PhLhG% , vj> = 0, for 1 <j<J; 

LhG = rhLph = rhLGph . (2.18) 

Evolutionary Error in a Fully Discrete Case 

In a fully discrete approximation with a time step At, we suppose a sequence of 
elements Uhn of V, are generated by a one-step procedure 

.;+l = Ehuhn, 

uh O = rhuo. 

n = 0, 1, 2 ,..., 
(2.19) 

Here Eh is an operator on vh which approximates the evolution operator E(At) 
defined to take u(t) to u(t + d t) in the evolution of (2.1). Then abbreviating E(At) to E 
and using superscripts to denote repeated application of E and Eh , the usual re- 
grouping of terms gives 

ehn = rhu” - uh” 

- r Enuo -h - Ehhnrhuo 

= [rhEun-’ - Ehrhu -11 + . . . + [EhSrhEu”-s-l 

+ ... + [E~-f,Eu” - &“rhuo]. 

The truncation error in this case is defined as 

(2.20) 

TX = (At)-’ (rhE - Ehrh) u, (2.21) 

which, when yh is the grid-point restriction and En is a difference scheme, is identical 
to the usual definition. To obtain an error bound it is necessary to establish the 
stability of the discrete procedure; that is, we require that there be constants y. and K 
such that 

/I Ehm% - Ehmwh I/h < KeYomAt /I uh - wh iih, (2.22) 
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where 11 . ljh denotes the norm to be used in Vh . Then, if is ~~~~~~~o~~~e~~~~5~ 
the truncation error (2.21), we have 

n-1 
(2.23) 

In relating (2.15) to (2.21) it is worth noting that if At is small so that E(‘48t) u N u + 
d ~LLEI, and Euler’s method is used in (2.18) so that Ehzah = zkn + dtLhuh , then 5. 
two expressions become identical in the limit At -+ 0. Note, too, that while a conven- 
tional stability analysis is needed in the fully discrete case to establish (2.22) in the 
semidiscrete case a bound needs to be found for the terms on the Ieft side of (2.14) 
and (2. IS): in an energy analysis this would be achieved by showing that 

Re<% , -hw - &uh)h < y il eh I': ? some y. 

An example is given at the end of the next section for ut t UU, = 0. 

(2.24) 

The definition of truncation error and the splitting of the error in (2.13) are consis- 
tent with those used by Wang and Fix [17] for Galerkin methods, though vve place 
mire emphasis on the discrete space V, to facilitate comparisons with finite differen- 
ces; for this reason too we call “truncation error” what Aubin [I] calls “lack of con- 
sistency.” In making such comparisons, it is also appropriate that we confine 
attention to the evolutionary error, for with finite differences the correspon 
approximation error is always ignored. 

3. ONE-DIMENSIONAL GALERKIN METHOD WITH LINEAR ELEMENTS 

In this section we study the truncation error defined y Eq. (2.15) for the simplest 
Galerkin methods, comparing the results with corresponding finite di:Kerence methods 
and noting the effect of differing choices of restriction operator. 

We assume a uniform mesh, xj = jh, j = -J, --J + I,..., J, and periodic boundary 
conditions at x = id = +Jh so that a simple Fourier analysis can be used. 

A piecewise linear function using these knots is given by Eq. (2.3) and the Galerki 
equations defining the least-squares fit to a function w are given by (2.5). If “iv is the 
Fourier mode ei”“, k = mrr/d, a simple calculation yields 

d h-l{& , w) = h-l 
s 
--d eikz&x/h - j) dx = 1’ eic(+s)$(s) ds 

*-II 
= eiCif($&Z sin2 44, (3.1) 

where 5 = kh, which we substitute into (2.5). The Fourier transform of the left-hand 
side of (2.5) gives a factor $(2 + cos f), so we introduce 

6(1 - cos E) 
a(a = ‘$72 + cos 5) 

(3.2) 
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to obtain zlol(,$) e”j’k(x) as the best linear fit to eikx. In terms of the restriction operator 
r,l, we have 

r,V”” = {cc(() F’, f = kh, -J ,<j < J>, (3.3) 

and we can regard CX(@ as the Fourier transform of rhl. At low frequencies, ~(0 - 
1 + 8”/12 so that nodal values are amplified by O(h2) compared with the fitted mode- 
confirming the second-order accuracy of the fit and agreeing with one’s intuition for a 
linear fit to a sine wave. The highest modes that can be represented unambiguously on 
the mesh are k = -&r/h, corresponding to two-grid-length waves, so most of our 
tables of truncation error will be for 0 < .$ < 7~. However, larger values of k give rise 
to the so-called aliased modes and it is an important feature of the restriction ~~1 that 
these are damped by a factor kF. In Table I we tabulate a([) up to [ = 2rr to show 

TABLE I 

Fourier Transform of rhl 

5 0 n/4 42 3l7/4 ?i &r/4 37112 7n/4 2rr 

43 1.0 1.052 1.216 1.427 1.216 0.514 0.135 0.021 0.0 

how amplification gives way to damping as 5 increases. Note that for the grid-point 
restriction, the corresponding quantity is always exactly equal to one, giving maxi- 
mum aliasing. 

Truncation Error for ut = u, 

Next let us consider the truncation error (2.15) when the Galerkin method is used in 
a semidiscrete approximation to the equation ut = U, . With the Fourier mode eikm 
for u it is clear that 

r,lLu = ikr,lu = (ikol([) eije}. (3.4) 

As in (2.1 S), the discrete Galerkin operator L,,1 is defined from the Galerkin equations 
and, recalling the notation U for phlun , these are 

(a,u - LU, +jj> = 0. (3.5) 

Then, since by definition stun = LhbrL so that a,U = phlLh& , we deduce that 
L&l E rhlLpnl. More explicitly, if we denote the nodal parameters of uh and U by Uj , 
these satisfy the system of ordinary differential equations 

&ri,-, + $rij + &,, = &hF(Uj,, - U&, (3.6) 

that is, ti, = Lhluh . It follows that, for u = eizx, 

(3.7) 
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So finally, the truncation error is given by 

3 sin 5 
(T.E.), = [l - f(2 -t cos 5) (3.8) 

The crucial quantity is that contained in the square brackets, which we denote by 
,&-&). As 5 + 0, /3&) N fR/180, displaying the fourth-order accuracy for t 
Galerkin scheme which is now well recognized; Collatz [2], Swartz and WendroUT i[i 
Lookmg back at the analysis it is clear that /3&) IS independent of the restriction 
operator used: if (3.6) were interpreted as a finite difference scheme, the same tr 
Lion error would be obtained except that LX([) would be replaced by unity. In T 

TABLE II 

Truncation Errors for up = u, 

P&> -+/180 0.0023 0.045 0.304 1.0 
/3FDCO -p/30 0.0118 0.151 0.529 1.0 

we therefore tabulate &&) together with the corresponding &(Q obtained from the 
fourth-order explicit finite difference scheme, considered, for example, by Kreiss and 

hger [12], 

Oj = h-I(1 - @z) A,uj, PF&~ = 1 - 
(4 - eos 5) sin f 

3( . (3.9) 

In more than one dimension such a scheme would be used as part of the iteration to 
solve the implicit system (3.6). 

Any nonlinear operation will prevent the restriction being taken out as a factor? so 
we start our considerations with the simplest, L(u7 6) = uv, t e product o~~ra~i~~, 
Using linear elements, the Galerkin method of approximating w = uu gives IV!, = 
LnYuh y 4 = rhlE(~hl~h)(~hl~h>l, that is, 

With Uj = e”“, V, = eij” we can therefore write 
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to define y&, 7). The truncation error under the restriction r,l becomes 

This is again fourth-order accurate with 

- - $0 (25‘37 + 3&?2 + 2&3) as f, 17 - 0 (3.13) 

and we tabulate 01(,$ + 57) &I([, r) in Table III; note that it is symmetric in ,$, r. 

TABLE III 

e-Q’f+q) (T.E.) for the Galerkin Product Operation under r,’ and Y$ 

xl4 74 3??/4 77 7d4 7712 37114 77 

rhl 63 

-0.0064 -0.104 
-0.058 -0.262 -0.160 0.0 
-0.286 -0.550 -0.672 0.0 0.387 0.604 
-0.476 -0.604 -0.619 -0.493 0.226 0.5 0.631 0.667 

However, suppose the truncation error for the same discrete operation is considered 
under the grid-point restriction rh g. Then, apart from the exponential factor, the 
truncation error is just 

as t, 7 + 0. (3.14) 

That is, from this viewpoint the scheme is only second-order accurate. As some 
compensation we see from Table III and from (3.11) that there is no error when 
5 + 7 = V, and for 6 + 7 > 7~ the two restrictions give very similar results. On the 
other hand, a more obvious approximation to the product operation, which is certain- 
ly quickly carried out, is to merely multiply together the nodal values and set Wj = 
r/j Vj . Now this clearly has no error under r hg, while under rhi the error is just [cx([ + 
77) - 40 441 exp ij(5 + r> and the scheme is only second-order accurate. These 
comparisons will be considered more fully for the advection equation in the next 
section. 

Numerical Example 

We end this section with a numerical example to illustrate the practical effect of 
using different restriction operators. Suppose the advection equation ut + UU, = 0 is 
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solved on the interval [-1, l] with periodic boundary conditions and initial data 
ZL(X; 0) = cos2 *TX. The exact solution at t = 3 is easily calculated and compared 
with that obtained by a straightforward application of Galerkin’s method using linear 
elements on a uniform mesh (the scheme denoted by SSG in the next section). 

Table IV first shows the x-values at which u attains the values 0 ($1 1. The 
solutions U are obtained by integrating with small time steps and extrapolating to 
dt = 0 so that only the spatial truncation errors are involved. The next three rows of 
the table show the corresponding values U”(x, &) of the Galerkin solution obtained 
with the most easily calculated initial data given by r*+(x, 0) and for mesh-lengt 
h = l/6, l/12, and l/24. The errors are clearly many times larger for x > g, where 
the wave is steepening, compared with x < +; moreover, the errors there are slow to 
converge and erratic in sign. 

Numerical Results for the Adveciion Equation, Interpreted under Restrictions ?I~ and rhl : with 
h = l/6, I/12, and l/24 

-l/4 
__- 

0.5 

l/24 

0.15 

l-Y/24 314 

0.5 

19:24 

0.25 

1 -1 --13/24 

0.0 0.25 
-- 

E/2 

1.0 0.75 0.0 

0.0011 0.2541 0.5018 0.7428 1.0536 0.6749 0.4893 0.3018 -0.0977 

0.0002 0.2510 0.5oQo 0.7493 1 .OOOl 0.7038 0.4806 0.2911 -0.0000 

0.0000 0.2501 0.5000 0.7499 1 .OQO9 0.7656 0.4942 0.2413 -O.QOOO 

-0.0006 0.2500 0.4999 0.7497 1.0120 0.7111 0.4997 0.2883 -0.0064 

-0.0001 0.2500 0.5000 0.7499 1.0045 0.7081 0.5002 0.2917 - 0.0022 

-0.0000 0.2500 0.5000 0.7501 1.0007 0.7637 0.5000 0.2364 -0.0001 

-0.0044 0.2508 0.5020 0.7458 1.0673 0.6858 0.4882 0.2906 -0.0129 

-0.0012 0.2502 0.5000 0.7501 1.0033 0.7061 0.4797 0.2882 --o.Q022. 

-0.0003 0.2499 0.5000 0.7501 1.0016 0.7669 0.4941 0.240: -O.O004 

This behavior is almost entirely explained by the next three rows of the table, whit 
show the values taken by the projection of the true solution, ~~Jr~,r~(x, t), correspon- 
ding to the three meshes used. In particular, at x = 17/24 and 19/24, where 1 u,, I is 
largest, the projections depend heavily on whether the x-value is a node or not and 
the error changes sign for h = l/24. The final three rows of the table give the values 

of U(x, +>, the Galerkin solution obtained from the consistently restricted initial data, 
mru(x, 0). Bt is the difference of these from phlr$u which our analysis most readily 
applies to, though it is also easy to deal with Ug. In Fig. 2 we plot the “compressive” 
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FIG. 2. 
dotted line. 

Solution of Ut -t uu, = 0 at t = + with h = Q; u and phlrhlu shown by full line, U by 

part of u at t = 4 together with U and phJr,b calculated for h = 9, showing how U is 
largely determined by attempting to match phlrhlu through the steep front. 

Though it is premature to try to identity the absolute magnitudes of these errors 
with the truncation errors tabulated in Table V of the next section, we can note some 
rough values. Initially we have a single mode k = 71, but at t = 4 the locally dominant 
mode varies from about 7772 to about 3~. Thus when h = l/12, the maximum value 
of 5 is about r/4. From Table I we might therefore expect approximation errors 
u - phlrhlu of up to 0.05, as we find; and these are reduced by a quarter for h = $4. 
However, from Table V we would expect truncation errors of only about 0.01 when 

TABLE V 

Scaled Truncation Error h(T.E.)/i exp z&$ + 7) for SSG 

?I 
\ f rr/4 r/2 3?f/4 7.l 

__--__ 
0 0.0019 0.086 1.021 3.820 
rl4 0.0096 0.262 1.803 3.014 
,I2 0.011 0.432 1.603 1.903 
37T/4 -0.107 0.021 0.617 0.974 
* -0.296 -0.527 -0.403 0.0 
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h = 12, which with the growth rate incorporated in (3.19) below is consistent with 
the erros p$rfi% - U in Fig. 2. 

Finally, we show how in this case a bound limiting the error growth may be obtainer 
and the evolutionary error e related to the truncation error Tin the manner of (2.24). 
From the evolution equations for u and U we have 

f we denote by ii the projection phlrhlu, then e = u” - U an (a - a, (;;j) = 0 so 
(et ) #+) = (ut - U, , &). Thus we get 

which corresponds to Eq. (2.14). To obtain a bound for the second term in the for 
of (2.24) we note that e E span{&) so, after integrating by parts, we obtain 

Le., 

and 

II e II x II e II = - &<<a + U>, 9 e2> t <a, e> (3.17) 

f@ + W,l II ell + I T!l. (3.18) 

he first term on the right corresponds to the sought-after bound in (2-24) an 
follows that 

where 
b = ?a? [- $(ii + 

In the present example, if we approximate U by a, then b = 3 up to t = 4. 

4. ALWECTION OPERATOR WITH LINEAR ELEMENTS: Q-STAGE 
GALERKIN P~0cEss 

In this section we compare three easily implemented approximations to u~,v, 
based on the Galerkin method with linear elements but distinguished 
which the product is formed. The three schemes are straigbtforwa~d 

581/34/z-9 
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noted by SSG for single-stage Gale&in), a two-stage Galerkin process (denoted by 
TSG), and a point multiplication Galerkin process (denoted by PMG). (The last one 
would be equivalent to that advocated by Swartz and Wendroff [18] when approxima- 
ting L+$‘(u).) We apply each to finding w = U&J and tabulate their truncation errors 
under the restrictions rhl and/or r#. 

(a) Single-Stage Galerkin SSG. Direct calculation from the Galerkin equations 
gives 

&w,, + *wj + Qw,+1 = ~h-l{(~Uj-, + $Uj)( vj - 5-J) 

+ (8vj.N + *uzvj+, - v,)). (4.1) 

For the Fourier modes Uj = e uf V, = e@g, where E = kh, 7 = Ih, the truncation , 
error under the restriction rhl is given by 

where 

(T.E& = ieiJ(Y&$ + r) - YSSG(& r) &) 4$1, (4.2) 

YSSG(t 
, 

T) = sin r + 4 sin $q ~0s 9E ~0s HE + r> 
hf2 + cos(5 + T)] ’ 

(4.3) 

Asymptotically, we have 

1 T.E. 1 - 1[4v4 + 8$$ + 7q2t2 - 2~f~]/720, 

= 171q4/720 = 1715h4/720, when k = 1. (4.4) 

Thus the scheme is fourth order and Table V shows the truncation error over the 
complete range of arguments. 

(b) Two-Stage Galerkin TSG. In obtaining an approximation to ua,v from piecewise 
linear approximations U and V to u and v, the SSG process effectively uses the piece- 
wise constant approximation a,V to &v. There would seem to be some advantage to 
calculating the closest piecewise linear approximation to a,v before incorporating it 
into a combination such as ua,v. This is the motivation for the two-stage Galerkin 
process. If we denote by Z the intermediate approximation to L&v, we obtain from 
combining (3.6) and (3.10), 

QZj_l + $Zj + QZjcl = +h-l(V,+l - F&J, 

Q wj-1 + 3 wj + 8 wj, = +&Jj_~Zj_, + lJj_,zj + ujz*_, + UfZj,~ 

+ Uj+lZj + Uj+lZj+J 4 $Ujzj * (4.5) 

The truncation error under r&l is therefore obtained from (3.7) and (3.11) in the same 
form as (4.2) with ~ss&, 7) replaced by 

YTSG(S, 7) = jQ3;iE; .$ ?+(f, ?) 

= 3 sin 713 + cos E + cos q + cos(6 + q)] 
h(2 + cm 77)(4 + 2 cos(f + 7)) ’ (4.6) 
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Asymptotically, we have 

1 T.E. j N E[2&l + 3pq + 2&3 - 4q4y720 

= lrj4/240 = 15h4/240, when k = b. (4.3 

Thns, the scheme is almost six times better than SSG in this limit and Table VI shows. 

the truncation error over the complete range of arguments. Note that the irn~rov~rne~~ 
in accuracy is considerable for 7 > l > 0 though not as great as in the asym~toti~ 
limit when E = 7j + 0. 

TABLE VP 

Scaled Truncation Error h(T.E.)/i exp ij(e + v) for TSG 

0 0.0019 0.086 1.021 3.820 

+I -0.0028 0.015 0.401 1.614 

42 -0.043 -0.308 -0.535 0.424 

3a/4 -0.222 -0.789 -1.006 0.067 

77 -0.372 -CL897 -1.001 0.0 

(6) ?oint-~~ult~~ication Gale&in FMG. Here 3%~ is approximated by the ~alerl~~ 
process, i.e., Zj is calculated as in TSG, but then Wj is obtained by simple m~lti~Iica- 
tion Wj = UjZj . The truncation error is clearly given, under the restriction rhls 
(4.2) with YssG replaced by 

~sym~totica~~y, we have only second-order accuracy with 

I T.E. j - @lF (4.8) 

and this shows up in Table VII as a 30-fold increase in error compared with TSG at 
If = q = T/4. H owever, note that the two schemes have the same error at [ A- r == ‘in 
because, as noted previously, y&t, rr - 5) = 1. Furthermore, the t~i~~~g behind the 
construction of PMG is oriented toward grid-point values and the truncation error 
should therefore also be analyzed under the restriction riLg. Comparing with (3.8), we 
see that the truncation error is then given by 

(T.E.)j = ieij(“+“)[E - 3 sin y/(2 + cos 7) h], (4.9) 

the quantity in square brackets being equal to 1&+(r). Thus under this restriction, 
since /3o(~) N ~~1180, the scheme is fourth-order accurate. The corresponding values 
are given in the last row of Table VII as there is no dependence on f* 
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TABLE VII 

Scaled Truncation Error h(T.E.)/I’exp g(t + 7) for PMG under 
Restrictions r,’ and @ 

\ f 17 7fl4 97.12 37114 71 

o&l 

0 0.0019 0.086 1.021 3.820 

71.14 0.087 0.322 0.401 1.614 

742 0.118 -0.308 -1.636 0.424 

37714 -0.222 -1.796 -3.023 0.067 

71 -0.599 -2.005 -2.796 0.0 

ozg 
All 0.0018 0.0708 0.7153 3.1416 

Comparing the three methods, it should first be noted that they all reduce to the 
same procedure as 6 -+ 0, the tabular entries under the restriction r,r then all equaling 
~“(7) /3o(q); for the resultant linear problem too the error differs by only the factor 
“(7) according to whether the analysis is done with the restriction rhl or r$--cf. the 
first and last rows of Table VII. But as the nonlinearity is increased with 4, the proce- 
dures differ from one another and the error depends increasingly on the restriction 
operator used. This dependence is summarized in Table VIII, where the leading terms 
in the error for 5: = 7 -+ 0 are given. Clearly we must compare SSG and TSG under 
r,l with PMG under rhg. 

The second point to note is the advantage gained by both TSG and PMG from 
explicitly forming the piecewise linear approximation to L&u before multiplying by U; 
with TSG the error actually decreases as [ is increased from zero. So the real choice is 
between these two. Comparing the last row of Table VII with Table VI, we see that 
there is very little to choose between them when all the frequencies present are low. 
That is, if we regard the nodal values given by PMG as approximations to the grid- 
point values of the solution and those given by TSG as approximations to nodal 

TABLE VIII 

Leading Terms in (iZ)-lT.E. for f = 7 

Restriction r 2 r hg 

SSG 

TSG l [” -- 
240 

PMG 
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parameters in a piecewise linear least-squares fit to the solution, there will be little to 
choose between them. However, suppose there are higher frequencies present, near 
the limit of the resolution of the mesh or beyond-for the truncation error as denned 
by (2.15) or (2.21) must in&de all frequencies in the true solution; or, looked at in 
another way, nonlinear interactions in the approximation wiil create higher frequencies 
which have to be resolved onto the finite mesh. Then only if rhr is used; rather than 
phg, will reasonable accuracy be maintained, and however the results of P 
interpreted they are not likely to be as good as those from TSG. This reflects the 
viewpoint, based on the theory of approximating noisy data, that in the presence of 
high frequencies one cannot expect to predict point values accurately but may ~re~~~~ 
best linear fits. 

5. ~WMERICAL EXPERIMENTS WITH THE W.&Low WATER EQUATIONS 
IN Two l&uzNs~oNs 

Over the last few years, a number of authors have compared the effectiveness of 
finite element and finite difference methods when used to approximate hyperbolic 
equations-see, for example, Cullen [3], Hirsch Ill], and Gresho et a/. [IO]. We 
briefly present here results for the shallow water equations and a fairly standard test 
problem in a channel on a rotating earth, see Grammeltvedt [9]‘ The equations are 

Ut+%+VUs++e-fv=O, 
vt + uv, + WI+ $,-tfu=O, (5.1) 

4t + (4, + (q%/ = 0. 

The Coriolis parameter f is as given by the P-plane approximation, f =f, j /3y, 
where f0 = 1 .O x lo-” set-I, ,i!I = 1.5 x lo-l1 see-l m-l. The channel is of width 

= 4400 km and periodic in the x-direction with period L = 6000 km: rigid bound- 
ary conditions, v = 0, are imposed at y = -J&H. Initial ~ond~t~o~s are derived from 
a 4 field given by 

4 = g(H, - H, tanhs(y/H) + Hz sech2 $(y/H)[O.7 cos %rx/L 
+ 0.5 cos 6nx/L + 0.3 cos 127rx/L]}, (5.2) , 

with the velocity fields then given by fu = - 4, , fv = 4, ; the parameters here are 
H,, = 2000 m, H, = 220 m, H3 = 133 m, and g = 10 m 1 sec2. Thus waves of wave 
numbers 1,3, and 6 are present initially and are in geostrophic balance. 

We present results for three main computational schemes-TSG, PMGS and a 
conservative fourth-order finite difference scheme based on (3.1) (scheme J in 
Grammeltvedt’s paper [9]), all used with leap-frog time integration with a time step 
chosen so as not to influence the error comparisons. Pn each case square grids of 
either 200 or 400 km were used and initial approximations obtained by taking the 
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appropriate restrictions of the initial data. As there is no analytic solution to the 
problem, a very fine grid (50 km) finite difference approximation was taken to give 
the definitive result and the appropriate restrictions of this were compared with the 
computed values. Several comparisons are possible but the most concise and relevant 
are the amplitudes and phases of the main waves, of wavenumbers 1 and 3. They are 
obtained from Fourier analyses in x with a weighting in y consistent with the initial 
data, i.e., sechz 9y/2H, and they supersede the results quoted in Cullen [4]. The results 
given in Table IX show that there is indeed little to choose between TSG and PMG in 
integrations up to 24 hr if the respective restrictions r,i and rhs are used in the com- 
putation of the error. 

TABLE IX 

Comparative Errors for Integration of the Shallow Water Equations 

Feature 
Time TSG PMG TSG PMG Fin. Diff. 
(W (400 km) (400 km) (200 km) (200 km) (200 km) 

Wave no. 1 
Amplitude 
(Percentage error) 

Wave no. 1 6 -0.03 0.00 0.00 
Phase 12 -0.06 -0.06 0.00 
Error 18 -0.06 -0.07 0.00 
(radians) 24 -0.00 -0.01 -0.03 

Wavenumber 3 
Amplitude 
(Percentage error) 

6 3.1 

12 25.8 

18 14.9 

24 -23.3 

2.8 

19.4 
28.9 

-29.4 

-0.13 
-0.01 
-0.2c.l 

-0.34 

0.1 

5.0 

5.2 

-2.1 

-0.01 
-0.04 
-0.07 

-0.01 

Wavenumber 3 6 -0.15 

Phase 12 -0.00 

Error 18 -0.21 

(radians) 24 -0.28 

6 0.0 0.1 0.4 0.3 0.2 

12 -5.8 -2.1 -0.3 -0.5 0.8 

18 -0.3 -0.6 -0.7 -0.5 2.6 

24 -10.3 -14.1 -1.0 -0.9 -7.0 

0.00 
0.00 
0.00 

-0.04 

0.1 
4.7 

4.9 

-1.5 

-0.01 
-0.04 

-0.07 

-0.01 

0.00 
0.00 
0.10 

-0.06 

1.4 

10.8 

16.7 

9.2 

0.01 
0.02 

0.11 
0.08 

The reduction of grid size from 400 to 200 km reduces the Fourier parameters 
kAx for the three modes in the initial data from 2~115, 2~15, 47~15 to v/15, 7~15, and 
2~r/5. From Tables VI and VII it is clear that an overall 16-fold error reduction could 
not be expexted but that this would be more nearly attained at lower wavenumbers 
and with PMG rather than TSG. The amplitudes in Table IX appear to bear this out: 
for wavenumber 1, the reduction in maxium error is roughly 14-fold for PMG and 
lo-fold for TSG while for wavenumber 3 it is 6-fold for PMG and 5-fold for TSG. The 
phase errors are more difficult to assess both because they are more difficult to 
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estimate and because the truncation error analysis is less obviously applicable; for 
both waves, however, it does seem that PMG shows a larger error increase when the 
mesh is doubled-for the higher wavenumber this is about 5-fold as compared with 
4-fold for TSG. Comparing both the finite element schemes with the finite ~~e~e~ee, 
one sees that the latter is up to seven times less accurate in amplitude at the higher 
frequency while only three times worse for wavenumber 3. This is entirely consistent 
with Table II, where the ratio varies from the asymptotic value of 6 to a value of 3 at 
the highest mode of 2~15. 

More tentative conclusions might be drawn from Table IX regarding t wtll of 
errors. There seems to be a deterioration with time in the ~erfo~rna~~ G and 
the difference scheme compared with TSG; and this would be consistent with the fact 
that the restriction operator @ used with these two provides no damping for the 
higher modes created as the computation proceeds. This is more a matter of stability 
and, indeed, the PMG scheme on the 400-km grid goes unstable after 3 days and on 
the 200-km grid after 5, while TSG remained very stable. The stability of the finite 
difference scheme has been improved by ensuring energy conservation and this may 
partly account for its lower accuracy. 

6. HIGJJER-ORDER ELEMENTS AND GENERAL OPERATORS 

The linear element which has been analyzed in previous sections is the lQwest-Q~d~~ 
spline, corresponding to order ,U = 2. In 121,221 Thorn ‘ d Wendroff analyzed the 

semidiscrete Galerkin method for the general B-splin case of linear di~er~~tia~ 
equations, periodic on an interval of the real line. owed that with e 
spaced mesh points, and smooth coethcients and data for the equation &u = Lu, 
with E of order z-n, the order of accuracy is 2~ - m if m is even and 2~ - m + 1 if, 
is odd (assuming 2~ b m + 2). Their analysis was in~~ential in the development of 
the ideas set out here and though presented in a different way had a similar structu 
It was based on a quasi interpolant with implicit use of the grid-point ~est~ction a 
a prolongation using linear combinations of shifted B-splines as basis f~~ctio~~~ 
Cullen 151 has recalculated the truncation errors using the natural ge~er~atiQ~s of 
phi and r,r and has shown that with such a restriction the product operation is appro ’ 
mated to order of accuracy 2~. Thus the orders of accuracy quoted above can 
maintained with nonlinear equations. 

Moreover, the use of multistage Galerkin methods can ensure that an accuracy of 
order 2~ is always maintained. For suppose Lu has the form L(@L(*-I) .*I E%, where 
each Lti) consists of either differentiation a3 or plication by u or 
function of x. Then the Galerkin approximation to each Lfi) has the form Lj$ = 
rhW)p,S, where rhS andp,s are the generalizations of rhl andp,l; and Lh = Lf,P) 7-e L”,j 
as order of accuracy 2~. This follows immediately from writing the trn~catio~ error 

as 
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In particular, with linear elements the single-stage Galerkin process gives only 0(h2) 
accuracy for the diffusion equation ut = u,, . But two-stage Gale&in, using the 
approximation to L = 8, contained in (3.6) twice, gives a fourth-order scheme. The 
truncation error for either scheme will be of the form @)(---k2) a(e) e@‘, analogous to 
that for z+ = U, given in (3.8). The resulting Oslo and ~rs,&) are tabulated in 
Table X and their respective asymptotic forms are -$112 and t4/90. For comparison 
the Numerov finite difference scheme I+(1 - (l/12) S2) PUj is also given in the table 
as or&); it approximates “half-lumping” the mass matrix in single-stage Gale&in 
and has an asymptotic error, EFD - .$“/240. The most noticeable feature of the 
tabulated results is that the two-stage process has large errors for large f and, in 
particular, leaves the two-grid-length wave (5 = rr) completely undamped; this is of 
course a property carried over from the approximation to & but which is much less 
acceptable here. Thus this scheme is not put forward as being of practical value, 
especially in comparison with the Numerov scheme. 

TAESLE X 

Truncation Errors for ut = u,, 

%SG(f) - -p/12 -0.052 -0.216 -0.427 -0.216 

GTTSGk? - p/90 0.0045 0.088 0.515 1.0 

EFD(& - &240 0.0016 0.027 0.141 0.392 

As a final illustration of the truncation error calculation for finite elements, we 
consider the approximation to ut = U, using quadratic elements. These have endpoint 
and midpoint nodes, so that there are three values to define the quadratic on each 
element, and with the Gale&n procedure give the scheme 

To carry out a Fourier analysis it is necessary to distinguish between the endpoint and 
midpoint nodes. Suppose we use a restriction r,q which, analogous to rhl, gives on 
uniform elements of length h 

(rbqeik3c)j+l,2 = c+,~({) ei(i+llz)c, 64) 

where as usual ,$ = kh. Then, in an obvious notation, we have with L E c?$ 

rhqLeiax = {ikol&) edit, ika,,,(f) ei(f+lf2)3. (6.5) 
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efining I&q by (6.2) and (6.3), we obtain also 

Now suppose p,q is defined by least-squares fitting. Then the coefficients in (4.4) are 
given by 

a0 cos &c$ + 401,,, = 15(-4t cos &( + 8 sin g)/p, 

n&4 - cos 6) + 2cl,,, CoS $c$ = (E cos 6 + 3( - 4 sin $>/E3. 
(6.8) 

The resulting asymptotic forms for these and for PO and ,8L,,Z from (6.7) are t 

%(E> = 1 + W4), %/s(5) = 1 +- fxe*j9 

P&9 = &I + (UW St2 + W4)j, ihe) = Eu - (1124) (2 -t m3>. 
(~.?I 

The scheme is therefore, under this analysis, only second-order accurate. 
This is partly misleading or unfair, however. Because plJ& is diRerent from 

~+,~/ol~ , the wave will distort with time and the ratio of the endpoint and rn~d~oin~ 
amplitudes will change. Thus the best fit to the eigensolution of ut = u, is not an 
eigensolution of the approximate equation. Suppose therefore we carried out our 
restriction operation in terms of the eigensolntions of the approximate equation. Thus 
we abandon (6.8) and insist that a0 = CC+,~ and ,& = cpllz in (6.7). The result is two 
nonlinear equations for c and for &,/E~ . Asymptotically they give 

MO = 5(1 - U/96) i? + W4)) 40, 
de) = 1 + (1132) (2 + fx*b) 40- (4.11) 

Thus the scheme is still second-order accurate but with a much reduced coefficient. 
For larger 5, these ratios are tabulated in Table XI. Since the truncation error is 
proportional to 1 - /IO/&z0 , these results show that this scheme does not justify its 
greater computational complexity, especially comparing equal numbers of nodes 

TABLE XI 

Ratios for the Assessment of Truncation Error Obtained with Quadratic Ekments and ut = LI, 

i%lih 0.9935 0.9826 0.9243 0.7958 0.32 0.0 

“l/Z/% 0.979 0.822 0.632 0 -0.89 - 
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rather than equal numbers of elements. Using appropriate collocation procedures, 
however, rather than the Galerkin procedure adopted in (6.2) and (6.3) it is possible 
to obtain fourth-order accuracy. 

7. DISCUSSION 

The analysis presented in this paper allows finite element and other approximations 
of evolutionary problems to be compared on a consistent basis, eliminating distortions 
arising from different methods of deriving initial data and interpreting the results. 
Computational results support the error analysis reasonably well. For the linear 
problems discussed, success depends on reproduction of the eigenfunctions and 
eigenvalues of the true solution. This is only achieved well by finite elements in the 
spline-Galerkin case. For nonlinear problems the evolutionary error analysis allows 
better understanding of the difficulties. To get acceptable finite difference solutions it 
has often been necessary to enforce conservation laws, or reinterpret the results using 
Fourier analysis and adopt techniques to eliminate aliasing interactions. Our analysis 
shows that it is necessary to make an initial assumption about what is being predicted 
before working out the truncation error. For instance, we can attempt to predict the 
best fit to a function in a finite element space or the first N Fourier components of it. 
Some assumptions are likely to lead to more successful algorithms than others, and in 
particular, attempts to predict point values are not likely to be successful. In general, 
to choose which parameters are to be predicted it will be necessary to know something 
about the exact solution. 

The analysis also suggests that it is necessary to use the finite element method with 
some care in wave propagation problem. High accuracy compared with finite dif- 
ferences has only been obtained in the spline-Galerkin case. Even here it turns out 
that it is lost if the mesh is irregular, though it can be recovered by transforming the 
coordinates instead. This behavior is very similar to that with finite difference schemes 
and has been confirmed by Cullen [5]. For nonlinear problems the finite element with 
the Galerkin procedure has the advantage that it seeks to predict coefficients of a fit 
rather than point values. However, even this could be lost if the Galerkin algorithms 
were replaced by collocation schemes based on low approximation errors at special 
points. It is also necessary to decide whether single- or multistage schemes should be 
used for complicated nonlinear operators. The analysis in Section 6 suggests that the 
best technique could be to combine the Galerkin product with high-order difference 
approximations to derivatives. The generalized truncation error analysis given here 
should make it easier to discuss such alternatives. 
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